Purkinje cells are found within the Purkinje layer in the cerebellum. They had an intricately elaborate dendritic arbor, characterized by a large number of dendritic spines. Their large dendritic arbors form nearly two-dimensional layers through which parallel fibers from the deeper-layers pass. These parallel fibers make relatively weaker excitatory (glutamatergic) synapses to spines in the Purkinje cell dendrite, whereas climbing fibers originating from the inferior olivary nucleus in the medulla provide very powerful excitatory input to the proximal dendrites and cell soma.
Each Purkinje cell receives a synapse from only a single climbing fiber. Both basket and stellate cells (found in the cerebellar molecular layer) provide inhibitory (GABAergic) input to the Purkinje cell, with basket cells synapsing on the Purkinje cell axon initial segment and stellate cells onto the dendrites. Purkinje cells send inhibitory projections to the deep cerebellar nuclei, and constitute the sole output of all motor coordination in the cerebellar cortex.
Purkinje cells show two distinct forms of electrophysiological activity: 1) simple spikes occur at rates of 17 – 150 Hz (Raman and Bean, 1999) either spontaneously, or when Purkinje cells are activated synaptically by the parallel fibers, the axons of the granule cells; 2) complex spikes are rapid (>300 Hz) bursts of spikes caused by climbing fiber activation, and can involve the generation of calcium-mediated action potentials in the dendrites. Following complex spike activity simple spikes can be suppressed by the powerful complex spike input. Purkinje cells show spontaneous electrophysiological activity in the form of trains of spikes both sodium- as well as calcium-dependent was initially shown by Rodolfo Llinas (Llinas and Hess (1977) and Llinas and Sugimori (1980). P-type calcium channels were named after Purkinje cells where they were initially encountered (Llinas et al. 1989), which are crucial in cerebellar function.
No comments:
Post a Comment